Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 180
Filter
1.
Yaoxue Xuebao ; 58(4):867-874, 2023.
Article in Chinese | EMBASE | ID: covidwho-20238681

ABSTRACT

Vaccination has been proved to be the most effective strategy to prevent the Corona Virus Disease 2019 (COVID-19). The mRNA vaccine based on nano drug delivery system (NDDS) - lipid nanoparticles (LNP) has been widely used because of its high effectiveness and safety. Although there have been reports of severe allergic reactions caused by mRNA-LNP vaccines, the mechanism and components of anaphylaxis have not been completely clarified yet. This review focuses on two mRNA-LNP vaccines, BNT162b2 and mRNA-1273. After summarizing the structural characteristics, potential allergens, possible allergic reaction mechanism, and pharmacokinetics of mRNA and LNP in vivo, this article then reviews the evaluation methods for patients with allergic history, as well as the regulations of different countries and regions on people who should not be vaccinated, in order to promote more safe injection of vaccines. LNP has become a recognized highly customizable nucleic acid delivery vector, which not only shows its value in mRNA vaccines, but also has great potential in treating rare diseases, cancers and other broad fields in the future. At the moment when mRNA-LNP vaccines open a new era of nano medicine, it is expected to provide some inspiration for safety research in the process of research, development and evaluation of more nano delivery drugs, and promote more nano drugs successfully to market.Copyright © 2023, Chinese Pharmaceutical Association. All rights reserved.

2.
Drug Delivery Letters ; 13(2):83-91, 2023.
Article in English | EMBASE | ID: covidwho-20236526

ABSTRACT

Coronavirus disease (COVID-19) is an infectious disease caused by coronavirus. Devel-oping specific drugs for inhibiting replication and viral entry is crucial. Several clinical trial studies are underway to evaluate the efficacy of anti-viral drugs for COVID-19 patients. Nanomedicine formulations can present a novel strategy for targeting the virus life cycle. Nano-drug delivery systems can modify the pharmacodynamics and pharmacokinetics properties of anti-viral drugs and reduce their adverse effects. Moreover, nanocarriers can directly exhibit anti-viral effects. A number of nanocarriers have been studied for this purpose, including liposomes, dendrimers, exosomes and decoy nanoparticles (NPs). Among them, decoy NPs have been considered more as nanodecoys can efficiently protect host cells from the infection of SARS-CoV-2. The aim of this review article is to highlight the probable nanomedicine therapeutic strategies to develop anti-viral drug delivery systems for the treatment of COVID-19.Copyright © 2023 Bentham Science Publishers.

3.
Precision Nanomedicine ; 5(3):911-917, 2022.
Article in English | Scopus | ID: covidwho-20234356

ABSTRACT

At the beginning of the first COVID-19 wave, it was believed that the life of the patients who had safely survived pulmonary complications caused by SARS-CoV-2 would soon return to normal. Today, we know that this is not for all patients the case. Unfortunately, for many patients, COVID-19 changed into Long COVID – not a life-threatening condition such as the short period of the infection with the coronavirus but with the potential to considerably reduce the quality of life. Notably, Long COVID manifests itself in major pathological alteration in the brain, besides other organs. It is unclear whether the alterations in the brain are reversible. Alterations include but are not limited to cognitive impairment and substantial reduction of grey matter. These clinical findings represent an urgent challenge for the design of nanomedicines targeting the brain and the mode of their application. The challenge comprises a third aspect, which is of physical nature and is the key to a revolution in nanomedicine: the blood-brain barrier (BBB). Even if a nanomedicine is effective in vitro, it remains therapeutically useless if it cannot cross the BBB, which safeguards that neither pathogens nor nanoparticles enter the best-protected organ in our body. Here, we present a theoretical model and discuss experimental results, which coherently indicate that it is possible to transiently open the BBB by its mechanical excitation and/or via chemical modification induced by music. © 2022, Andover House, Inc.. All rights reserved.

4.
Medical Review ; 3(2):180-183, 2023.
Article in English | Scopus | ID: covidwho-20233779

ABSTRACT

Rapid developments in the coronavirus disease 2019 (COVID-19) mRNA vaccine showcased the power of lipid nanoparticle (LNP) delivery systems in fighting infectious diseases. In addition, mRNA therapeutics are also in development for cancer immunotherapy. Recently, mRNA therapy has been expanded to induce immune tolerance, the opposite of immune-boosting effects, to treat diseases involving enhanced immune responses including allergies and autoimmune diseases. mRNA LNPs have been used to treat peanut allergy by us and autoimmune experimental autoimmune encephalomyelitis by Ugur Sahin. It is expected that more and more research is going to delve into the immune tolerance field for allergies and autoimmune diseases, where effective therapies are in short supply. © 2023 the author(s), published by De Gruyter, Berlin/Boston.

6.
Vigilancia Sanitaria Em Debate-Sociedade Ciencia & Tecnologia ; 11, 2023.
Article in English | Web of Science | ID: covidwho-20231054

ABSTRACT

Introduction: Scientific production has experienced an unprecedented increase with the COVID-19 pandemic in a short period of time. Objective: To identify and characterize the Latin American scientific production on nanotechnology-based products with potential applications in the areas of diagnosis, vaccine, pharmacological treatment, theranostics and non-pharmacological intervention to fight COVID-19. Method: A scoping review was conducted based on the framework of Arksey and O'Malley and sought to incorporate recommendations from the Joanna Briggs Institute Reviewer's Manual and Preferred Reporting Items for Systematic reviews and Meta-Analyses extension for Scoping Reviews (PRISMA-ScR). The bibliographic search took place in PubMed, Science Direct, LILACS and SciELO. Studies that reported nanotechnology-based products with potential applications in the areas of interest referenced previously were included. A simple quantitative analysis was conducted to provide numerical summaries of characteristics of interest from the studies added to the review. Results: 26 (3.4%) articles published in 14 international and regional journals were included. Authors from five countries (Brazil, Chile, Costa Rica, Ecuador, and Mexico) were responsible for the total number of articles that made up the review. The production of 6 (23.1%) articles included international collaboration, involving institutions from 10 countries. The median time from submission to publication of articles was 126 days (interquartile range: 58-200). Most of the Latin American scientific production consisted of narrative reviews (n = 19;73.1%). The five areas defined as of interest for this study were addressed by one of the scientific articles, especially the products intended for pharmacological treatment of COVID-19 (n = 14;53.8%). Conclusions: This is the first scoping review to provide a map of Latin American scientific production on nanotechnology-based products with potential applications in areas of interest to fight COVID-19. There are deficiencies related to the publication of basic research, representativeness of Latin American countries in the region, studies with greater strength of evidence and to international collaboration to produce scientific articles that merit to be reduced.

7.
Frontiers in Nanotechnology ; 4, 2022.
Article in English | Web of Science | ID: covidwho-20230882

ABSTRACT

Despite ongoing public health measures and increasing vaccination rates, deaths and disease severity caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its new emergent variants continue to threaten the health of people around the world. Therefore, there is an urgent need to develop novel strategies for research, diagnosis, treatment, and government policies to combat the variant strains of SARS-CoV-2. Since the state-of-the-art COVID-19 pandemic, the role of selenium in dealing with COVID-19 disease has been widely discussed due to its importance as an essential micronutrient. This review aims at providing all antiviral activities of nanoselenium (Nano-Se) ever explored using different methods in the literature. We systematically summarize the studied antiviral activities of Nano-Se required to project it as an efficient antiviral system as a function of shape, size, and synthesis method. The outcomes of this article not only introduce Nano-Se to the scientific community but also motivate scholars to adopt Nano-Se to tackle any serious virus such as mutated SARS-CoV-2 to achieve an effective antiviral activity in a desired manner.

8.
Mol Aspects Med ; : 101138, 2022 Aug 29.
Article in English | MEDLINE | ID: covidwho-20230871

ABSTRACT

Regenerative medicine as a field has emerged as a new component of modern medicine and medical research that encompasses a wide range of products including cellular and acellular therapies. As this new field emerged, regulatory agencies like the Food and Drug Administration (FDA) rapidly adapted existing regulatory frameworks to address the transplantation, gene therapy, cell-based therapeutics, and acellular biologics that fall under the broader regenerative medicine umbrella. Where it has not been possible to modify existing regulation and processes, entirely new frameworks have been generated with the intention of providing flexible, forward-facing systems to regulate this rapidly growing field. This review discusses the current state of FDA regulatory affairs in the context of stem cells and extracellular vesicles by highlighting gaps in the current regulatory system and then discussing where regulatory science in regenerative medicine may be headed based on these gaps and the FDA's historical ability to deal with emerging fields. Lastly, we utilize case studies in stem cell and acellular based treatments to demonstrate how regulatory science has evolved in regenerative medicine and highlight the ongoing clinical efforts and challenges of these therapies.

9.
Yaoxue Xuebao ; 58(4):867-874, 2023.
Article in Chinese | EMBASE | ID: covidwho-2324463

ABSTRACT

Vaccination has been proved to be the most effective strategy to prevent the Corona Virus Disease 2019 (COVID-19). The mRNA vaccine based on nano drug delivery system (NDDS) - lipid nanoparticles (LNP) has been widely used because of its high effectiveness and safety. Although there have been reports of severe allergic reactions caused by mRNA-LNP vaccines, the mechanism and components of anaphylaxis have not been completely clarified yet. This review focuses on two mRNA-LNP vaccines, BNT162b2 and mRNA-1273. After summarizing the structural characteristics, potential allergens, possible allergic reaction mechanism, and pharmacokinetics of mRNA and LNP in vivo, this article then reviews the evaluation methods for patients with allergic history, as well as the regulations of different countries and regions on people who should not be vaccinated, in order to promote more safe injection of vaccines. LNP has become a recognized highly customizable nucleic acid delivery vector, which not only shows its value in mRNA vaccines, but also has great potential in treating rare diseases, cancers and other broad fields in the future. At the moment when mRNA-LNP vaccines open a new era of nano medicine, it is expected to provide some inspiration for safety research in the process of research, development and evaluation of more nano delivery drugs, and promote more nano drugs successfully to market.Copyright © 2023, Chinese Pharmaceutical Association. All rights reserved.

10.
BioTech (Basel) ; 12(2)2023 May 05.
Article in English | MEDLINE | ID: covidwho-2323994

ABSTRACT

There have been significant collaborative efforts over the past three years to develop therapies against COVID-19. During this journey, there has also been a lot of focus on understanding at-risk groups of patients who either have pre-existing conditions or have developed concomitant health conditions due to the impact of COVID-19 on the immune system. There was a high incidence of COVID-19-induced pulmonary fibrosis (PF) observed in patients. PF can cause significant morbidity and long-term disability and lead to death in the long run. Additionally, being a progressive disease, PF can also impact the patient for a long time after COVID infection and affect the overall quality of life. Although current therapies are being used as the mainstay for treating PF, there is no therapy specifically for COVID-induced PF. As observed in the treatment of other diseases, nanomedicine can show significant promise in overcoming the limitations of current anti-PF therapies. In this review, we summarize the efforts reported by various groups to develop nanomedicine therapeutics to treat COVID-induced PF. These therapies can potentially offer benefits in terms of targeted drug delivery to lungs, reduced toxicity, and ease of administration. Some of the nanotherapeutic approaches may provide benefits in terms of reduced immunogenicity owing to the tailored biological composition of the carrier as per the patient needs. In this review, we discuss cellular membrane-based nanodecoys, extracellular vesicles such as exosomes, and other nanoparticle-based approaches for potential treatment of COVID-induced PF.

11.
Acta Pharm Sin B ; 2022 Sep 23.
Article in English | MEDLINE | ID: covidwho-2326756

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has been a major health burden in the world. So far, many strategies have been investigated to control the spread of COVID-19, including social distancing, disinfection protocols, vaccines, and antiviral treatments. Despite the significant achievement, due to the constantly emerging new variants, COVID-19 is still a great challenge to the global healthcare system. It is an urgent demand for the development of new therapeutics and technology for containing the wild spread of SARS-CoV-2. Inhaled administration is useful for the treatment of lung and respiratory diseases, and enables the drugs to reach the site of action directly with benefits of decreased dose, improved safety, and enhanced patient compliance. Nanotechnology has been extensively applied in the prevention and treatment of COVID-19. In this review, the inhaled nanomedicines and antibodies, as well as intranasal nanodrugs, for the prevention and treatment of COVID-19 are summarized.

12.
Macrophage Targeted Delivery Systems: Basic Concepts and Therapeutic Applications ; : 1-556, 2022.
Article in English | Scopus | ID: covidwho-2315095

ABSTRACT

The proposed book is envisioned for the nascent and entry-level researchers who are interested to work in the field of drug delivery and its applications specifically for macrophage targeting. Macrophages have gained substantial attention as therapeutic targets for drug delivery considering their major role in health and regulation of diseases. Macrophage-targeted therapeutics have now added significant value to the lives and quality of life of patients, without undue adverse effects in multiple disease settings. We anticipate examining and integrating the role of macrophages in the instigation and advancement of various diseases. The major focus of the book is on recent advancements in various targeting strategies using delivery systems or nanocarriers followed by application of these nanocarriers for the treatment of macrophage associated disorders. Macrophage Targeted Delivery Systems is primarily targeted to Pharmaceutical Industry & Academia, Medical & Pharmaceutical Professionals, Undergraduate & Post graduate students and Research Scholars, Ph.D, post docs working in the field of medical and pharmaceutical sciences. © The Editor(s) (if applicable) and The Author(s), 2022. All rights reserved.

13.
Ther Deliv ; 12(9): 631-635, 2021 09.
Article in English | MEDLINE | ID: covidwho-2319943

ABSTRACT

Graphical abstract [Formula: see text].


Subject(s)
Brain Diseases , Nanomedicine , Blood-Brain Barrier , Drug Delivery Systems , Humans
14.
ACS Nano ; 17(10): 8935-8965, 2023 05 23.
Article in English | MEDLINE | ID: covidwho-2320344

ABSTRACT

Nitric oxide (NO), a gaseous transmitter extensively present in the human body, regulates vascular relaxation, immune response, inflammation, neurotransmission, and other crucial functions. Nitrite donors have been used clinically to treat angina, heart failure, pulmonary hypertension, and erectile dysfunction. Based on NO's vast biological functions, it further can treat tumors, bacteria/biofilms and other infections, wound healing, eye diseases, and osteoporosis. However, delivering NO is challenging due to uncontrolled blood circulation release and a half-life of under five seconds. With advanced biotechnology and the development of nanomedicine, NO donors packaged with multifunctional nanocarriers by physically embedding or chemically conjugating have been reported to show improved therapeutic efficacy and reduced side effects. Herein, we review and discuss recent applications of NO nanomedicines, their therapeutic mechanisms, and the challenges of NO nanomedicines for future scientific studies and clinical applications. As NO enables the inhibition of the replication of DNA and RNA in infectious microbes, including COVID-19 coronaviruses and malaria parasites, we highlight the potential of NO nanomedicines for antipandemic efforts. This review aims to provide deep insights and practical hints into design strategies and applications of NO nanomedicines.


Subject(s)
COVID-19 , Neoplasms , Male , Humans , Nitric Oxide/therapeutic use , Neoplasms/therapy , Drug Carriers/therapeutic use , Nitric Oxide Donors
15.
Materials Science & Engineering: R ; 153:N.PAG-N.PAG, 2023.
Article in English | Academic Search Complete | ID: covidwho-2306057

ABSTRACT

Viruses lacking the capacity to infect mammals exhibit minimal toxicity, good biocompatibility, and well-defined structures. As self-organized biomolecular assemblies, they can be produced from standard biological techniques on a large scale at a low cost. Genetic, chemical, self-assembly, and mineralization techniques have been applied to allow them to display functional peptides or proteins, encapsulate therapeutic drugs and genes, assemble with other materials, and be conjugated with bioactive molecules, enabling them to bear different biochemical properties. So far, a variety of viruses (infecting bacteria, plants, or animals), as well as their particle variants, have been used as biomaterials to advance human disease prevention, diagnosis, and treatment. Specifically, the virus-based biomaterials can serve as multifunctional nanocarriers for targeted therapy, antimicrobial agents for infectious disease treatment, hierarchically structured scaffolds for guiding cellular differentiation and promoting tissue regeneration, versatile platforms for ultrasensitive disease detection, tissue-targeting probes for precision bioimaging, and effective vaccines and immunotherapeutic agents for tackling challenging diseases. This review provides an in-depth discussion of these exciting applications. It also gives an overview of the viruses from materials science perspectives and attempts to correlate the structures, properties, processing, and performance of virus-based biomaterials. It describes the use of virus-based biomaterials for preventing and treating COVID-19 and discusses the challenges and future directions of virus-based biomaterials research. It summarizes the progressive clinical trials of using viruses in humans. With the impressive progress made in the exciting field of virus-based biomaterials, it is clear that viruses are playing key roles in advancing important areas in biomedicine such as early detection and prevention, drug delivery, infectious disease treatment, cancer therapy, nanomedicine, and regenerative medicine. [ FROM AUTHOR] Copyright of Materials Science & Engineering: R is the property of Elsevier B.V. and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full . (Copyright applies to all s.)

16.
Nanobiotechnology for the Livestock Industry: Animal Health and Nutrition ; : 189-217, 2023.
Article in English | Scopus | ID: covidwho-2304981

ABSTRACT

Nanomedicine, nanotechnology, and nanodelivery systems are techniques that are of great interest to various researchers. The high surface area and other distinct physical properties of nanoparticles makes them suitable as nanomedicine for targeted drug delivery systems, MRI imaging, diagnosing kits, biomarkers, gene therapy, and many more applications. This chapter will highlight the special features of nanomedicines, their synthesis methods, and their clinical uses for targeted drug delivery. None of us is unaware of or untouched by the virus COVID-19. Outbreaks of viral diseases can potentially occur at any time and it is very challenging to deal with viruses owing to their mutation capability. It has been seen from the literature that nanomedicine has proved helpful for targeted drug delivery at the infected site without any harm to any other part of body, especially in cancer treatment. Nanomedicine has come out as lifesaving strategy: nanomedicine or nanoparticles-based strategies have strong potential to fight against viruses not only for human beings but also for animals. Nanoparticles have the special ability to bind with the virus epitope resulting in inactivation of the virus. There are several nanocarriers with the potential to replace conventional drug delivery systems with targeted drug deliveries. The nanocarriers or nanomedicine can work with small dosages, minimal toxicity, and desired flow of release of drug at the infected site. This chapter will thoroughly cover the advances in the nanomedicine field along with the challenges involved and future scope in improving the lives of livestock. © 2023 Elsevier Inc. All rights reserved.

17.
International Journal of Current Pharmaceutical Review and Research ; 14(4):1-6, 2022.
Article in English | EMBASE | ID: covidwho-2297372

ABSTRACT

Nanotechnology is a new and rapidly evolving subject in the pharmacological and therapeutic professions. Nanoparticles have many advantages as medication delivery systems, including increased efficacy and fewer adverse drug reactions. This study investigated the roles of nanomedicine and drug delivery systems in the pharmaceutical industry, as well as the advantages and disadvantages of nanotechnology. The study used a qualitative research technique, with online survey questionnaires sent to medical professionals and experts in the field of nanomedicine. These surveys comprised open-ended questions that enabled respondents to record their responses in whatever way they deemed fit. The ten respondents were from a variety of medical and health institutes, as well as medical consulting firms. In terms of results, the research established that nanomedicine had been used in medical care for therapy and diagnostic purposes. They are being explored in clinical trials for several reasons. Nanoparticles are used to treat renal disease, Tuberculosis, skin problems, Alzheimer's disease, and various types of cancer and to create COVID-19 vaccines. Further information about the study findings may be found in the results and discussion chapter.Copyright © 2022 Dr. Yashwant Research Labs Pvt. Ltd.. All rights reserved.

18.
Antioxidants (Basel) ; 12(4)2023 Apr 02.
Article in English | MEDLINE | ID: covidwho-2299768

ABSTRACT

Nanosized antioxidants are highly advantageous in terms of versatility and pharmacokinetics, with respect to conventional molecular ones. Melanin-like materials, artificial species inspired by natural melanin, combine recognized antioxidant (AOX) activity with a unique versatility of preparation and modification. Due to this versatility and documented biocompatibility, artificial melanin has been incorporated into a variety of nanoparticles (NP) in order to give new platforms for nanomedicine with enhanced AOX activity. In this review article, we first discuss the chemical mechanisms behind the AOX activity of materials in the context of the inhibition of the radical chain reaction responsible for the peroxidation of biomolecules. We also focus briefly on the AOX properties of melanin-like NP, considering the effect of parameters such as size, preparation methods and surface functionalization on them. Then, we consider the most recent and relevant applications of AOX melanin-like NPs that are able to counteract ferroptosis and be involved in the treatment of important diseases that affect, e.g., the cardiovascular and nervous systems, as well as the kidneys, liver and articulations. A specific section will be dedicated to cancer treatment, since the role of melanin in this context is still very debated. Finally, we propose future strategies in AOX development for a better chemical understanding of melanin-like materials. In particular, the composition and structure of these materials are still debated, and they present a high level of variability. Thus, a better understanding of the mechanism behind the interaction of melanin-like nanostructures with different radicals and highly reactive species would be highly advantageous for the design of more effective and specific AOX nano-agents.

19.
Pharmaceutics ; 15(3)2023 Feb 26.
Article in English | MEDLINE | ID: covidwho-2297179

ABSTRACT

Nanomedicine is a branch of medicine using nanotechnology to prevent and treat diseases. Nanotechnology represents one of the most effective approaches in elevating a drug's treatment efficacy and reducing toxicity by improving drug solubility, altering biodistribution, and controlling the release. The development of nanotechnology and materials has brought a profound revolution to medicine, significantly affecting the treatment of various major diseases such as cancer, injection, and cardiovascular diseases. Nanomedicine has experienced explosive growth in the past few years. Although the clinical transition of nanomedicine is not very satisfactory, traditional drugs still occupy a dominant position in formulation development, but increasingly active drugs have adopted nanoscale forms to limit side effects and improve efficacy. The review summarized the approved nanomedicine, its indications, and the properties of commonly used nanocarriers and nanotechnology.

20.
J Control Release ; 352: 931-945, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-2300493

ABSTRACT

COVID-19 acquired symptoms have affected the worldwide population and increased the load of Intensive care unit (ICU) patient admissions. A large number of patients admitted to ICU end with a deadly fate of mortality. A high mortality rate of patients was reported with hospital-acquired septic shock that leads to multiple organ failures and ultimately ends with death. The patients who overcome this septic shock suffer from morbidity that also affects their caretakers. To overcome these situations, scientists are exploring progressive theragnostic techniques with advanced techniques based on biosensors, biomarkers, biozymes, vesicles, and others. These advanced techniques pave the novel way for early detection of sepsis-associated symptoms and timely treatment with appropriate antibiotics and immunomodulators and prevent the undue effect on other parts of the body. There are other techniques like externally modulated electric-based devices working on the principle of piezoelectric mechanism that not only sense the endotoxin levels but also target them with a loaded antibiotic to neutralize the onset of inflammatory response. Recently researchers have developed a lipopolysaccharide (LPS) neutralizing cartridge that not only senses the LPS but also appropriately neutralizes with dual mechanistic insights of antibiotic and anti-inflammatory effects. This review will highlight recent developments in the new nanotechnology-based approaches for the diagnosis and therapeutics of sepsis that is responsible for the high number of deaths of patients suffering from this critical disease.


Subject(s)
COVID-19 Drug Treatment , COVID-19 , Sepsis , Shock, Septic , Humans , Shock, Septic/therapy , Intensive Care Units , Lipopolysaccharides , COVID-19/diagnosis , Sepsis/diagnosis , Sepsis/drug therapy , Anti-Bacterial Agents/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL